Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth

نویسندگان

  • Douglas Bowman
  • David M. Bradley
چکیده

We prove some new evaluations for multiple polylogarithms of arbitrary depth. The simplest of our results is a multiple zeta evaluation one order of complexity beyond the well-known Broadhurst-Zagier formula. Other results we provide settle three of the remaining outstanding conjectures of Borwein, Bradley, and Broadhurst [4]. A complete treatment of a certain arbitrary depth class of periodic alternating unit Euler sums is also given. Research partially supported by NSF grant DMS-9705782. Research supported by the University of Maine summer faculty research fund.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Continuation of Multiple Zeta Functions

In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth d: ζ(s1, . . . , sd) := ∑ 0 1 and ∑d j=1 Re (sj) > d. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.

متن کامل

More Congruences for Numerical Data of an Embedded Resolution

To an arbitrary intersection of exceptional varieties of an embedded resolution we associate a nite number of congruences between naturally occurring multiplicities. This theory generalizes previous results concerning just one exceptional variety. Moreover we describe precise equalities which imply the congruences and we give some applications on the poles of Igusa's local zeta function.

متن کامل

On some explicit evaluations of multiple zeta-star values

In this paper, we give some explicit evaluations of multiple zeta-star values which are rational multiple of powers of π. 1 Main Results The multiple zeta value (MZV) is defined by the convergent series ζ(k1, k2, . . . , kn) := ∑ m1>m2>···>mn>0 1 m1 1 m k2 2 · · ·m kn n , where k1, k2, . . . , kn are positive integers and k1 ≥ 2. The integers k = k1+k2+ · · ·+kn and n are called weight and dept...

متن کامل

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

Phénomènes de symétrie dans des formes linéaires en polyzêtas

— We give two generalizations, in arbitrary depth, of the symmetry phenomenon used by Ball-Rivoal to prove that infinitely many values of Riemann ζ function at odd integers are irrational. These generalizations concern multiple series of hypergeometric type, which can be written as linear forms in some specific multiple zeta values. The proof makes use of the regularization procedure for multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001